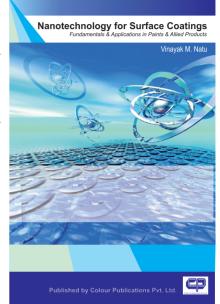
Nanotechnology for Surface Coatings



Foreword by
Prof. Ray Fernando
Cal. PolyTech,
California, USA

By Vinayak M. Natu

Many literature articles and books have been published over the last decade on a wide range of topics related to nanotechnology; however, a comprehensive treatment on the topic, focusing on the highly multi-disciplinary field of coatings and allied products has not been available so far. Mr. Natu's greatest contribution through this book is making nanomaterial science and technology accessible to students as well as industrial scientists and technicians who are interested in this field. He has endeavored to make this knowledge accessible to practicing technologists.

Information on nanotechnology's promise for coatings, nanomaterials such as inorganic nanoparticles are nowadays commonly available for research and development groups working in

this technology. What is missing today is easy access to the vast knowledge base that has been developed over the same period of time. Mr. Natu's greatest contribution from this book is making that knowledge available to the coating specialists in a comprehensive package.

This book is a culmination of the author's excursion into nanotechnology over three years where he tried to comprehend nanomaterials with curiosity to identify opportunities for practicing technologists, concerned with architectural and industrial coatings alike. The book opens with the introductory chapters on nanotechnology. It then deals with the chemistry and applications of various nanomaterials. While the special function nano-coatings have been described, one is conscious that such a list will always remain incomplete due to the rapid developments in the field. The book goes on to discuss extensively the methods of production of nanomaterials and the techniques of for their characterization.

The author Vinayak M Natu is a physical chemist by education and possesses rich R&D experience of over three decades in the coatings and allied industries. He is a well known figure in the Indian coating industry for his scientific competence.

Order from: The Books Division

Colour Publications Pvt. Ltd.

126-A, Dhuruwadi, A.V. Nagwekar Marg, Prabhadevi. Mumbai 400 025. Tel.: 24306319/24309318/24309610; Fax : 91-22-24300601; E-mail: colorpub@vsnl.com

CONTENTS

Chapter 1 : Crux of the matter

Chapter 2: Basic Concepts of Nanotechnology

- 2.1 Atomic Rearrangement at Nanoscale
- 2.2 Unpredictability of Properties at Nanoscale
- 2.3 Electron Band Gap
 - 2.3.1 Nanosize and Electron Band Gap
 - 2.3.2 Experimental Determination of Electron Band Gap
- 2.4 Surface Chemical Potential of Nanoparticles
- 2.5 Ostwald Ripening and Particle Size Distribution
- 2.6 Nano-dispersions and Micro-dispersions
 - 2.6.1 Stabilization of Nanodispersions
 - 2.6.2 Practical Aspects of stabilization of Nanodispersions
- 2.7 Crystal Structure in Nanoparticles
 - 2.7.1 Photocatalytic Activity in Nanosize Crystals
- 2.8 Pigment Surface concentration (PSC) in Nano-Coatings
 - 2.8.1 Inter-relationship between PVC, PSC and Particle Size of Pigment
 - 2.8.2 Influence of Nanosize Pigment on CPVC
- 2.9 Organic Polymers at Nanoscale
- 2.10 Inorganic and Organic Nanostructures
- 2.11 Self-assembly
- 2.12 Fractal Interfaces
 - 2.12.1 Determination of Fractal Dimension of a Surface
- 2.13 Significance of Quantum Mechanics in Nanotechnology
 - 2.13.1 Quantum Tunneling and its Application
- 2.14 References

Chapter 3: Nanomaterials and their Potential Use

- 3.1 Nanocrystals: Quantum Dots6
- 3.2 Nano Clays
- 3.3 Layered Double Hydroxides (LDH)
- 3.4 Nano TiO₂ and ZnO: Photocatalysts
- 3.5 Aerogels
- 3.6 Photonic Band Gap Crystals (PBG)
- 3.7 Carbon Nanotubes
- 3.8 Molecular Building Blocks (MBB) for Nanomaterials
 - 3.8.1 Fullerenes
 - 3.8.2 Diamondoids: Adamantanes
 - 3.8.3 POSS: Polyhedral Oligomeric Silsesquioxanes
- 3.9 Dendrimers
- 3.10 Block Copolymer Micelles
- 3.11 Organic Nanometals
- 3.12 Thermo-responsive Nanopolymers: LCST& UCST
- 3.13 Cyclodextrins
- 3.14 Organic Nano Pigments
- 3.15 Nanocomposite Coatings
- 3.16 Ionic Liquids
- 3.17 References

Chapter 4: Creation of Nanostructures

- 4.1 Dispersion methods
 - 4.1.1 Nanodispersion by Media Mills
 - 4.1.2 Ultrasonic Nanodispersion
 - 4.1.3 Microfluidic Process
- 4.2 Colloidal methods

- 4.2.1 Sol-Gel Technique: Inorganic Polymerization
- 4.2.2 Reverse Micelle synthesis
- 4.2.3 Self-assembled Surfactants as Nanotemplates for Synthesis
- 4.2.4 Complex Coacervation
- 4.3 Polymerization methods
 - 4.3.1 Nanoencapsulation by Miniemulsion Polymerization
 - 4.3.2 Controlled Radical Polymerization (CRP) for Nanopolymers
- 4.4 High temperature methods
 - 4.4.1 Microwave Methods of Synthesis
 - 4.4.2 Hydrothermal Methods of Synthesis
 - 4.4.3 Flame Spray Pyrolysis (FSP) for Metals Oxide Nanoparticles
 - 4.4.4 Plasma Process for Inorganic Nanomaterials
- 4.5 Self assembly methods
 - 4.5.1 Host-Guest Synthesis
 - 4.5.2 Capillary Condensation: Tool for Nanofabrication
 - 4.5.3 Layer-by-Layer Assembly (LbL) for Nanofilms
 - 4.5.4 Surfactant-Polymer Interactions
- 4.6 References

Chapter 5: Nano Coatings

- 5.1 Potential of Nanotechnology in Coatings
- 5.2 Nano Metal Oxides as UV absorbers
- 5.3 Scratch Resistance Improvement
- 5.4 Corrosion Resistance
- 5.5 Super Hydrophobic Self-cleaning Coatings
- 5.6 Photocatalytic Coatings
- 5.7 Super-hydrophilic Surfaces
- 5.8 Hygienic Coatings
- 5.9 Antireflective Coatings
- 5.10 Next Generation: Self-assembled Coatings
- 5.11 References

Chapter 6: Characterization of Nanostructures

- 6.1 Zeta Potential
- 6.2 Dynamic Light Scattering (DLS)
- 6.3 Raman Spectroscopy
- 6.4 Atomic Force Microscopy
- 6.5 Small Angle X- Ray Scattering (SAXS)
- 6.6 Small Angle Neutron Scattering (SANS)
- 6.7 References

Chapter 7: Health and Safety with Nanomaterials

- 7.1 Special Features
- 7.2 Types of Nanomaterials
- 7.3 Routes of Entry
- 7.4 Nanotoxicology
- 7.5 Fire and Explosion Safety
- 7.7 Classification, Labeling and Occupational Exposure Limits (OEL)
- 7.8 References

Chapter 8: Nano-Quiz

Index